CHAPTER 2

Mercantilist-Utopian Projects in Eighteenth-Century Sweden

Richard Swedberg

During the eighteenth century several waves of collective hope went through Sweden, some of which were to leave permanent marks on the country. First and foremost, many Swedes hoped for better economic times, since it was generally understood that peace had now replaced war on a permanent basis. Some people in the ruling elite no doubt hoped that Sweden would regain its status as a military power. But there were also those in the elite who hoped to turn their country, which at this point in time was poor and underdeveloped, into one with a rich, powerful, and self-sufficient economy. To accomplish this they initiated a number of utopian and hopeful economic projects. They tried, for example, to cultivate silk, coffee, and tea. They also started up a number of enterprises in the hope of replacing imports that they found wasteful. It is with these utopian and hopeful economic activities that this chapter is primarily concerned.

The general mode of thought within which these hopeful economic plans for the Swedish kingdom were conceived, and which also dominated official thought in Sweden at the time, is usually referred to as “mercantilism.” In short, these plans were developed within an economic worldview according to which the national economy was seen as a household, and the main task of the rulers was to manage the resources of the country well, and thereby increase its wealth or surplus (see, e.g., Heckscher 1935; Karlsson 1992; Magnusson 1991; Runefelt 2001). Moneymaking and trade were primarily to be
But without the need for a powerful military presence abroad, the country was poised to turn in a new direction. The energy that had earlier been turned outward, to war and conquest, was now turned inward and devoted to the development of the country. Some people in the ruling circles no doubt hoped that this might help the country to reemerge as a grand power, once the current military setbacks had been overcome. Nonetheless, the 1700s in Sweden were going to be characterized by peace and prosperity, as opposed to war and bad finances, as had been the case during the Age of Empire. Especially the years 1720–72 were in many respects full of hope, and they are known in Swedish history as the Age of Freedom (Frihetstiden).

In the rest of this chapter I will present and analyze three cases of mercantilist-utopian projects that all involved the economy during the Age of Freedom, and in which hope played an important role. They were all undertaken to make the country prosperous and rich. In order to give the reader a chance to view these cases in their natural context, I will first provide some background information.

The political elite essentially saw its task as being to rule Sweden according to the dictates of tradition, the laws that had been laid down in the Bible (Lutheranism), and the ideology of mercantilism. Its main responsibility was to develop the state and the public household so that Sweden once more could become a strong and powerful nation. This meant that the resources of the kingdom had to be managed wisely, including the population.

The Swedish state had already initiated a mercantilist policy in the 1600s, which was continued in the 1700s. There was especially a deep concern with developing a favorable balance of trade, which led to repeated attempts to reduce imports and encourage exports. According to legislation from the 1720s, for example, foreign ships that sailed to Sweden were not allowed to carry merchandise from countries other than their own. Members of the nobility were forbidden to wear non-Swedish clothes at special occasions. A number of laws and regulations were also passed that had as their main goal the encouragement of the production in Sweden of goods that were typically imported from other countries, such as textiles, porcelain, tobacco, and so on. These economic units that were to produce these were referred to as manufactories (manufacturera), and a special state agency was created in 1739 to encourage their existence.

The population of Sweden was predominantly agrarian and traditionalistic in spirit. Peasants made up the overwhelming majority of the population, while the aristocracy and the gentry only amounted to a small
Table 2.1. Composition of the Population in 1760 in Sweden Proper and in Finland

<table>
<thead>
<tr>
<th></th>
<th>Sweden</th>
<th>Finland</th>
</tr>
</thead>
<tbody>
<tr>
<td>"Gentlefolk" and servants⁴</td>
<td>90,311</td>
<td>17,324</td>
</tr>
<tr>
<td>Lower state employees, etc. ⁵</td>
<td>180,221</td>
<td>74,432</td>
</tr>
<tr>
<td>Townsmen and their servants ⁶</td>
<td>122,370</td>
<td>18,773</td>
</tr>
<tr>
<td>Rural population (except soldiers, nobility, etc.) ⁷</td>
<td>1,444,769</td>
<td>381,279</td>
</tr>
<tr>
<td>Total population</td>
<td>1,837,671</td>
<td>489,808</td>
</tr>
</tbody>
</table>

Source: Heckscher 1954: 141.

Note: The available data about the population has been arranged according to profession or estate or a combination of the two.

⁴ Contains the following categories: nobility, clergymen and teachers, gentry, and servants.

⁵ Contains the following categories: soldiers, court and church servants, etc.

⁶ Contains the following categories: merchants, manufacturers, craftsmen, shippers and sailors, other burghers, and servants.

⁷ Contains the following categories: iron and metal makers, miners, rural craftsmen, militia, rural shippers and sailors, peasants, cottagers, paupers and crofters, lapps (samis), settlers, etc.

part of the state; another had to do with the opening up of new land to be farmed.

But even if ways to improve agriculture fascinated the ruling circles of Sweden during this period and became expressed as a general "agricultural optimism," as one economic historian has put it, this paled in comparison to their positive attitude toward the manufactories (Magnusson 1996: 209). Here, according to Heckscher, we may truly speak of "enthusiasm" (1954: 162). It was felt that it was imperative for Sweden to replace the goods that were imported with domestically produced items, and much energy as well as huge sums of money were devoted to this task.

The arts and sciences also went through a period of enthusiastic growth during the Age of Freedom. Neither before nor after has Sweden had so many brilliant scientists and academics as during that century. Several of these individuals are still household names, such as Carl von Linné (with his classification of flowers), Anders Celsius (with his thermometer), and Emanuel Swedenborg (with his ideas on heaven and hell). Historians of science will also be familiar with the names of Christopher Polhem (mechanics), Nils Rosén von Rosenstein (pediatrics), Torbern Bergman (chemistry), and Carl Wilhelm Scheele (chemistry). Thanks to the efforts of Pehr Wilhelm Wargentin, Sweden also became the first country in the world to produce reliable population statistics (starting in 1749). There were some other splendid accomplishments as well, in astronomy, mathematics, and so on (see, e.g., Lindroth 1975).

The main institutional vehicle for many of these accomplishments was the Royal Swedish Academy of Sciences, which was created in 1739 and which today is mainly known for the Nobel Prize. While it had been modeled after the Royal Society in London (1660) and the Académie Royale des Sciences in Paris (1666), it differed from these and similar institutions elsewhere in Europe in that it primarily saw its task as economic, and economic more in the sense of the household than of the market.

According to the original plan for the academy, its name was to have been the Economic Academy of Science (ekonomisk vetenskapsocietet). While it was eventually given a different name, the main purpose of the academy remained the same, namely to increase the wealth of the Swedish household by means of science. "No science in the world is more important than that of economics," as one of its prominent members put it (Linné). Another argued that "the economy is the goal [of society]" (Polhem), and a third that "the art of the household" is "the most important and inclusive of all the sciences; it is the sea into which all the rivers flow" (Wargentin; see Heckscher 1942a: 43).
Given the great interest that existed for the economy as a household in eighteenth-century Sweden, it was natural that a huge number of pamphlets and books on this topic should be produced. According to a statistical study, the production of works on the economy during this century goes well beyond anything that can be found in Swedish history either before or after it (Heckscher 1942a: 37). While the peak was reached during the mid-eighteenth century, the two main authors of economic writings before 1730 were Swedenborg and Polhem—a reminder that the lines between economics and the other sciences were drawn differently in the 1700s from how they are today.

Sweden was also the second country in the world to institute professorships in economics, following Germany, where three chairs in cameralism had been created in 1727–30. In 1741 a chair in economics was instituted in Uppsala University, followed by one in Åbo in 1747, in Lund in 1750, and a second in Uppsala in 1759. The last chair was to be devoted to “practical economy” (praktisk økonomie), a name that gives an indication of how the subject of economics was seen at the time in Sweden, namely as a way to practically further the wealth of a country by encouraging growth in agriculture, manufacturies, and householding more generally. Linné was the main force behind the creation of the last three chairs, and he also saw to it that these were filled by his own students—who had been trained primarily in botany and natural history.

That economics was a very different science in eighteenth-century Sweden from what it is today can also be illustrated by the case of Anders Berch, the holder of the first chair in economics in Sweden (1711–74). Berch started out by publishing a work in political arithmetic that was very much in the tradition of William Petty and contained a number of optimistic calculations, including that Sweden could easily support a much larger population than the current one. This was followed by a work in mercantilist theory that was to become the main textbook in economics for the next eighty years in Sweden, Introduction to General Householding (1747).

Project #1: The Hopeful Inventory of the Swedish Economy with the Help of Political Arithmetic

The first example I have chosen to illustrate the role that hope played in the Swedish economy during the eighteenth century has to do with the inven-
Table 2.2. The Two Main Categories of Economic Activity: Householding and Profit Making

<table>
<thead>
<tr>
<th>Goals</th>
<th>Means</th>
<th>Key Institutions</th>
<th>Macroeffect</th>
</tr>
</thead>
<tbody>
<tr>
<td>Householding surplus and</td>
<td>management of resources (based</td>
<td>the estate, the individual</td>
<td>reproduction, slow economic</td>
</tr>
<tr>
<td>wealth,</td>
<td>on use value), inventory,</td>
<td>household, at times the state</td>
<td>growth</td>
</tr>
<tr>
<td>satisfaction of needs</td>
<td>patriarchal order</td>
<td></td>
<td></td>
</tr>
<tr>
<td>independence (autarchy)</td>
<td>profit-making activities (based</td>
<td>the market, the corporation</td>
<td>economic change, creative</td>
</tr>
<tr>
<td></td>
<td>on exchange value)</td>
<td></td>
<td>destruction, expansion</td>
</tr>
</tbody>
</table>

Note: Economic activities can, according to Max Weber (1978: 86–90), be conceptualized as belonging to either the category of householding or that of profit making. Examples of household economies would include the original Greek estate (oikos), the manorial estate, the modern household of the nuclear family, and the socialist state. Mercantilism and cameralism can roughly be characterized as economic doctrines about the household of the state, just as home economics and household economics can be said to constitute an economic doctrine about the modern family or household.

quantitative observations of reality, it often proceeded to bold and strange generalizations on the basis of these observations.

Political arithmetic reached Sweden in the 1700s, partly due to the efforts of the Royal Swedish Academy of Sciences. Berch also published a book on this topic a few years after being appointed to the chair in economics in Uppsala, entitled Ways in Which to Investigate the Household Management of Countries and States Through Political Arithmetic (1746). Most of this work is generally considered to be lacking in independence, but on at least one point Berch added something of his own. This was his estimate of the population of Sweden, its current size as well as its potential size. What was new about this was not only the choice of Sweden as his example, but also the optimist vein in which Berch carried out his work.

In the spirit of Petty, Berch began his calculation of Sweden’s population from the fact that it has one hundred thousand hemman (a geographic unit used for taxation in the countryside). He then assumed that each of these hemman holds between one and sixteen families, and that each family (depending on the size of its land) has either eight members (two parents, four children, and two helping hands) or seven members (two parents, four children, and one helping hand). This gave a total of 2,708,000 people, to which Berch added 342,000 (to account for those who lived in the cities) and de-ducted 60,000 (to account for widows). The final number for the population of Sweden was thus 2,990,000. This was roughly one-third more than the actual figure (which was around 2,200,000), and it was well received by the authorities, who liked optimistic estimates of the size of the population. They were also very happy with Berch’s prognosis that if Sweden used its resources well, it could house more than eight times this number, or 24,000,000 people.

The optimism about the potential wealth of the Swedish household that comes through in the figures of Berch was by no means unique, but rather part of a general attitude among Swedish scientists, civil servants, and the educated elite. This can be illustrated by the responses that the Royal Swedish Academy of Sciences received to its announcement in the early 1760s of a prize for the best answer to the following question: “What are the advantages and disadvantages of Sweden’s climate, compared to other countries, with reference to its public household as well as its individual households?” Most of the participants were convinced that Sweden had been blessed by the Lord and that its lucky inhabitants lived in the best of all possible worlds.

Several of the contestants agreed, for example, that the strong sun in southern countries was a nuisance, while the snow of Sweden was a blessing since it made the nights bright and protected the earth from the cold. Sweden was enormously rich and it could very well manage without the kind of resources that other countries had. As an example of this latter argument, one may cite the following statement: “I find even less ground for our complaint [in Sweden] about the lack of elephants, camels and other animals and birds. We have a surplus of all the animals we need, both tame and wild, both forest and seabirds. If someone seriously tried to make our elks tame, they would become our camels, and we would not need to feed them” (Högström 1766: 31).

Another writer noted that in Sweden “we do not need to fear tigers, lions, leopards and elephants or warrior monkeys”; there is the occasional “bear or wolf”—but that is all. Similarly, Swedes “do not need to fear sharks; we only have peaceful fishes” (Gadd 1764: 44). And “while no one in Egypt dares to go out between 12 o’clock and 4 in the afternoon, for fear of getting their feet burned; and while the natives of the island of Ormus [Hormuz] have to lie half the day in waterholes, to avoid being devoured by the burning heat of the sun, we can always travel in comfort and go about other tasks in good spirits and with healthy bodies” (47).

The discussion of Sweden’s population during the eighteenth century was similarly characterized by an element of wild optimism and hope. I
have already mentioned Berch’s estimate that Sweden could hold a population of twenty-four million, and he was not alone in suggesting such a high number. Other estimates were twenty-six, twenty-nine, and thirty million (Johannisson 1988: 112). Today, by comparison, the Swedish population is ten million, and that of Finland is five and a half million.

Mercantilism in its Swedish version was also obsessed with counting everything and reducing everything to a number; and there was also a strangely utopian element to the whole thing. As an example of this trend, we can mention Jacob Faggot, who was the head of the Land Survey Board and in 1741 published a booklet entitled Thoughts on the Knowledge and Description of One’s Country ([1741] 1743). Faggot encouraged his countrymen to explore every nook and cranny of the kingdom and to send their reports to the Royal Swedish Academy of Sciences. Maps and engravings were helpful in this enterprise, he added, and should accompany the reports. Faggot also carefully enumerated each type of resource that should be investigated and counted: rivers, brooks, lakes, mills, types of animals, types of handicraft, types of buildings, and much more.

Faggot’s appeal for a general geographic and economic inventory of the country was very successful, and reports soon poured into the academy. Many of these drew on political arithmetic along the lines of Petty, including the famous description of Lajhala parish by E. O. Runeberg, which became a model that many followed (Runeberg 1758, 1759). Every inhabitant, every piece of land, and every object in this parish were carefully investigated, described, and counted by Runeberg, who also calculated their value down to the last penny. He emphasized that while 1,800 people lived in Lajhala in 1750, there was room for more than fifteen times that number, or 28,000 people. Runeberg finally made an attempt to calculate which of the members of the population (“humans”) had an economic value to the country (“workers”). A woman, for example, counted as three-quarters of a man in this respect. According to Runeberg’s calculations, 40 percent of the population could be classified as “workers.”

Most authors who have commented on the attempt in Sweden to make an inventory of the country’s resources with the help of political arithmetic have noted the hope and enthusiasm that often characterized this enterprise. Karin Johannisson, as already mentioned, refers to it as a form of “wild and somewhat crazy optimism” (Johannisson 1988: 111). The Swedish state, she also notes, was originally very interested in the production of an inventory of the country with the help of political arithmetic; and the main reason for this was that it wanted to command more resources in order to reassert its place as a great European power. As part of this effort, it strongly encouraged the Royal Swedish Academy of Sciences to pursue this task. In 1748 it also created a special office, the Office of Tables (Tabellverket), which had as its primary task the collection of information about the resources of the country. When this office started to produce reports, these were read with great interest by the political elite. All material of this type was also secret, since it was important that the enemies of Sweden did not find out how strong the country was.

The task of the Office of Tables was facilitated by the fact that the Swedish clergy had a legal obligation (since 1686) to document every single birth, death, baptism, and marriage in the country. Since each person who was born in Sweden was automatically also a member of the Lutheran church, this meant that the church had information on practically every person in the country.

The figures that the clergy collected at a local level were sent to the Office of Tables in Stockholm, where they were added up and assembled into tables. These were then rushed to the powerful Secret Committee of Congress (sekreta utskottet), where they were studied with much interest, in the hope that they would show that Sweden had plenty of resources to draw on.

Thanks to the information of the clergy, the Office of Tables produced very reliable information; and after a while the Swedish politicians realized that Sweden in reality had a rather small population: 2.2 million. Other information helped to puncture other aspects of the dream that Sweden was a wealthy country, and after a while Congress lost interest in the Office of Tables and its calculations of the population. The Office of Tables was not abolished—it was understood that it produced reliable information about the country’s population—but it no longer attracted the attention and hope that it once had.

Project #2: The Hopeful Activities Regarding the Swedish Economy by Carl von Linné

The second example I will use to illustrate the role of hope in the Swedish economy during the eighteenth century involves Carl von Linné (1707–78) and his work. While Linné is primarily known as a botanist and for his
classification of flowers, he also considered himself an economist, and it is mainly in this latter capacity that he is of interest in this chapter. It should also be emphasized that Linné saw his scientific work as part of a divinely inspired economy in a way that was popular at the time in Sweden. It is also at precisely this point that hope enters into the picture; and, according to the foremost authority on Linnean economics, Linné’s ideas on economics were heavily infused by a kind of “Candidean” optimism (Koerner 1999: 102, 152). As will soon be shown, this optimism also came to be expressed in a number of institutional ways, since Linné was one of the country’s most celebrated scientists and had plenty of resources at his disposal.

The fact that Linné’s economic ideas were deeply influenced by religion makes it necessary to say something about the role of religion in eighteenth-century Swedish society and especially among its scientists. At this point in time Sweden was still a deeply religious country, and the Swedish church was vigilant in its role as the guardian of general morality as well as Lutheran orthodoxy. It nonetheless approved of the Christian doctrine known as physicotheology, which had emerged in the late seventeenth century in England and soon spread to Sweden. The basic theme of this doctrine was that science and Christianity are closely connected: to study nature is a way to honor God, by showing the glory of his creation.

Physicotheology has its name from the title of a book by William Derham that appeared in 1713 and became immensely popular (Derham [1713] 1773). Physico-Theology was translated into Swedish in 1736, and one of its readers was Linné, who eventually became the foremost representative of this type of religion in Sweden. According to Derham, God had created the world according to a master plan, and everything in it—every plant, every bird, every human being, and so on—had a predetermined place. The exact place that something occupied in this divine and static order was not immediately clear to humans, but if they worked diligently they might find it. In this way, they would also get to know the purpose of everything, since nothing existed without a purpose. The air, for example, was necessary for respiration, Derham explained, just as the wind was necessary for navigation. Without soil, plants could not grow; and without trees, people could not make tools or buildings. The earth, in brief, was a magnificent mirror of the glory of God; and it was man’s task to explore the earth and use it for the purposes that God had invested it with.

Linné, who originally had wanted to become a clergyman like his father, was a deeply religious man. He saw his own work in natural history, including botany, as a response to a task created by God. It was his true vocation to explore nature, and in this way make it possible for other Swedes to make use of its many fruits.

As a scientist, Linné is best known for having introduced a new system of classification into botany, the so-called sexual system, based on the structure and number of stamens and pistils. It is often noted that in creating this system, Linné brought order into botany, since his system of classification was simple and effective. Every plant was essentially given a name according to a binominal nomenclature. By looking at a few parts of the flower, the observer could easily identify it, a bit like a person today is identified through family name and first name.

It is also often argued that Linné was satisfied with just naming plants, and that he paid little attention to more substantial issues such as plant anatomy, plant physiognomy, and experiments. It is sometimes even argued that, properly speaking, Linné did not make one truly scientific discovery (see, e.g., Lindroth 1983: 34). While this type of criticism is essentially correct, there is more to Linné’s classifications than simply a desire to supply labels and a superficial approach to science. Linné’s attraction to the exercise of naming plants was closely related to his religious worldview; and to name something, from this perspective, meant first of all to establish its correct place in the order of God.

It essentially meant an attempt to bring order into what might at first seem chaos, but which in reality constituted an order that man had been set to explore. As Linné famously put it, “I saw the never-ending, all-knowing, and all-powerful God’s back where he walked, and I was astounded! I traced his footprint over the fields of nature and saw in each one, even in those I could barely see, an unending wisdom and power” (quoted in Rausing 2003: 189). Linné did not think that his classification directly traced the divine order of nature, but he never stopped hoping that he one day would find the key to the order of God’s creation. He was also convinced that till this was done, his classification represented the best alternative.

While posterity only remembers Linné’s work in botany, he himself was interested in all of nature—in each of its three kingdoms: plants, animals, and stones. Linné was sure that all of nature had been created in God’s mirror and that everything had an exact place that it was his task to discover. “Deconomia naturae,” as he wrote in a booklet with this title, “is nothing but the great Creator’s wise arrangement of natural objects on our earth, thanks to which they are capable of having the purpose for which they were created” (Linné [1749] 1906: 5).
Linné's ideas on economics were closely interwoven with his ideas on religion and nature. God had created nature, and the first and foremost task of economics was to make an inventory of nature so that man could use plants, animals, and so on in the way that God had intended. In a pamphlet called *The Foundation of the Economy, Through Knowledge of Nature and Physics* (1740) Linné noted that "there is no science in the world that is higher, more important than oeconomy, since all of man's welfare rests on it; hence this science needs to be improved and studied carefully" (Linné 1740: 406).

Linné said that he realized that there was a science known as cameralism that mainly dealt with the economy and the state, but he still insisted that economics could be defined as "the science that teaches us how to survive by using the different forms of nature, as based on the elements." As a science, he continued, economics rests on "two pillars": "physics and knowledge of nature." "Since the object of economics is knowledge of nature," this meant that one also has to have some knowledge of the three kingdoms of nature (ibid.). *Oeconomia mineralium*, Linné says, supplies us with knowledge about stones, to be used, for example, in metallurgy. The knowledge of *Oeconomia animalium* is useful for such activities as fishing, hunting, and the raising of cattle. And *Oeconomia vegetabilium* provides us with useful knowledge of plants.

While the foundation of Linné's view of economics was religious along the lines of physicotheology, he also shared many of the views of the mercantilists. Though he never became a member of the political party in Sweden that identified the strongest with mercantilist ideas, the Hats, he moved in their circles and shared their ideas. He wanted Sweden to have a positive balance of trade, and he agreed that the most important way to go about this was to encourage the creation of manufactories, and in this way put an end to the import of luxuries and other items that could be produced in the country equally well.

In reality Linné went further than this and developed his own primitive version of cameralism (Koerner 1999). He was, for example, against all foreign trade and wanted Sweden to be totally self-supporting. He was deeply suspicious of paper money and preferred precious metals, especially gold. His economic ideal was static in nature, and he had no concept of economic growth. This last point can be illustrated by the following quote from Lisbet Koerner's important study *Linnæus: Nature and Nation*: "His understanding of economic 'improvement' was confined to a qualitative elaboration of this living world which he inhibited. He wanted to perfect, not to break, what he saw as a God-ordained link between nature and man. In his projected future, shoes would be stuffed with cotton grass, pillows filled with eider-down, and cloth woven from buffalo wool and dyed with tropical insects. He hoped to ride elks, write with swan feathers, and read by the light of seal-fat lamp" (Koerner 1999: 111).

According to Heckscher, Linné had no sense whatsoever of economic realities (1942b: 5). What mattered to Linné was first of all to find out what purposes God had invested nature with and then, by using nature in the right way, produce well-being in the population. People often starved in Sweden, Linné noted, but once they understood that they could eat many of the plants that existed all around them in nature, things would improve.

While Linné's ideas on economics may seem peculiarly abstract and far from reality when they are presented in a summary way as I have done here, this is only part of the story. Linné also tried to translate his economic ideas into practice in a number of ways, and it is to this topic—how Linné set about realizing his hope for a wealthy and self-supporting Sweden—that I now shall turn. He primarily did this in three ways. He tried to spread his ideas on the proper management of the Swedish household by initiating professorships in economics. By traveling around in Sweden, he also attempted to make an inventory of the country's economic resources so that Swedes could live better. And, finally, he sent some of his students abroad, with the task of bringing back plants to Sweden that were useful but currently had to be imported.

While the decision to institute the first professorship in economics in Sweden was taken by the estates, it was Linné who was the driving force behind the next three professorships, and he also succeeded in having his own students appointed to all of them (see, e.g., Heckscher 1942a). Linné's ideas of what a professorship in economics should be about can be distinguished from cameralism as well as mercantilism first and foremost by the heavy emphasis that he placed on knowledge of nature, including botany. The professor of the chair in economics that was instituted in 1759 in Uppsala should, for example, according to the instructions, live on an experimental farm that was also to be used in the education of the students. The lectures were to consist of a mixture of natural history, manufacturing techniques, and agricultural information.

Linné also undertook a series of "scientific trips" through Sweden with the purpose of making an inventory of the country's resources (see, e.g., Linné [1741] 1908; Heckscher 1942b). Most of these trips had been decided
on by the estates, which not only financed them but also provided Linné with detailed instructions on what to look for during his travels. First and foremost, he should be on the lookout for what could ensure the success of the manufactories, and in this way help to reduce the imports that were draining the country of precious metals. Linné was told, for example, to look for clay that could be used for porcelain, for plants that could be used for medicinal purposes, and for plants that could be used to dye textiles. It was also important to carefully catalog all plants, animals, and stones.

Linné’s reports from these trips have become part of the literary heritage of Sweden, and many of them are still read today. In fresh and unceremonious language Linné not only describes the general features of the geography and botany of the various landscapes of Sweden, but also comments on the habits of their inhabitants and makes many sharp-eyed observations. The trips allowed Linné to make an inventory of nearly all of Sweden; for example, in 1749 he published a work on how to use many of the wild plants in the country. In *Flora Oeconomica or the Household Use of Plants in Sweden That Grow Wild*, Linné described the uses of 1,137 wild plants, mentioning their medicinal use, which of them can be eaten, and so on. In the preface he says, “When I realized the great utility that plants can have in general, it saddened me that there was no inventory of them. . . . I thus realized what utility such an inventory would have for the household, my countrymen and my country” (Linné [1749] 1971: 4–5).

In the preface to *Flora Oeconomica* Linné also says that “the all-knowing Creator has not put man’s resources in one place, but instead spread them all over the world, in the air, in the water and in the depth of the earth: thereby making it necessary for him to look for them everywhere they exist” (Linné [1749] 1971: 3). This is where Linné’s students come into the picture, or more precisely his project of sending his students all over the world to bring back plants and animals that could be used to make Sweden prosperous and also eliminate the need for importing such items as coffee, tobacco, rice, cotton, and so on.

All in all, Linné sent nineteen of his favorite students all over the world during these “scientific trips,” as he called them—to Africa, India, China, the United States, and South America. One student accompanied Captain James Cook on his famous trip around the world in 1768–71, while others traveled on ships belonging to the Swedish East India Company or on any ship that would take them. The students were typically gone for very long stretches of time, and nearly half of them died during the trips.

All the students—or “apostles,” as Linné called them—had been trained in natural history and given precise information about what to look for abroad. For example, Linné was obsessed with cultivating tea in Sweden; he made repeated efforts to have tea bushes brought to Sweden, and even tried to cultivate tea himself in Uppsala. He was also eager to start up silk production in Sweden, and soon, thanks to his students, there were large silk plantations in Stockholm and a few other places as well. The students also brought back huge collections of plants and various exotic objects and animals. All of this excited Linné enormously, and he wrote about one of his returning “apostles” that he awaited his arrival in Uppsala as eagerly as “a bride [longs] for one o’clock at night” (Lindroth 1983: 54–55).

How successful was Linné’s enterprise of adding to Sweden’s wealth through his students in this manner? The general verdict is somewhere between “basically a failure” and “totally a failure” (see, e.g., Sörlin 1989: 106; Koerner 1999: 148, 163). Linné’s hope that many of the plants in foreign countries could thrive in Sweden turned out to be illusory. In his attempts to change the laws of botanical acclimatization, so to speak, Linné sometimes succeeded in keeping his imported plants alive for some time in his famous garden in Uppsala. Eventually, however, all died, victims of the cruel cold of the Swedish winter. His project to transfer plants from a mountainous region abroad to a mountainous region in Sweden, such as Lapland, also failed—as did his more general project of turning Lapland into a kind of “West Indies” of Scandinavia, with cedar and cinnamon groves and abundant plantations of saffron.

The idea of creating a new type of economics, with a heavy element of botany and natural history, and spreading it through the country via the university, also led nowhere. In Lund, the chair in Linnaean economics was abolished a few years after Linné’s death, with the justification that the topic was better covered by the chair in “historia naturalis.” The other two chairs in economics that he had helped to create soon also reverted to a more traditional approach in economics.

Project #3: The Hope Associated with the Manufactures in Eighteenth-Century Sweden

The most spectacular expression that hope took in the Swedish economy in the 1700s was the attempt by Congress and the Swedish state to create a powerful manufacturing industry. While the projects of political arithmetic
and Linné's economics had more to do with the ushering in of a new and hopeful way of looking at economic reality than with engaging in direct economic activity, it was different with the project of the manufactories. Indeed, Congress spent more money on the manufactories than on either agriculture (which constituted the main source of livelihood for some 80 percent of the population) or the iron industry (which represented Sweden's most profitable export industry at the time).

There were several motives behind the huge investments into the manufactories that Congress now undertook, and one of these was clearly related to mercantilist ideology. According to this way of looking at economic reality, the ideal was a state that could do without imports, a belief that often led to attempts by state elites in Europe to encourage domestic production that could replace what was being imported. But, according to Heckscher, whose work on the role of the manufactories in Swedish history still dominates the academic discussion of this issue, there was also one other important motive behind the enthusiasm and hope that Congress expressed on this issue (Heckscher 1937, 1949, 1954). This was the idea that Sweden, for the first time in its history, would be able to produce a type of goods that had never before been produced in the country; and this was especially true for high-quality, finished goods. This primarily meant sugar, porcelain, and various types of high-quality textiles, such as fine wool, silk, and cotton.

While this second motive, from today's perspective, can easily be interpreted as a desire to modernize and industrialize Sweden, there exist important differences between the manufactories and the type of establishments that came with industrialism. The manufactories essentially belonged to the type of industry that existed before modern industry. Their activities differed from the ones associated with modern industry in at least two ways: they did not take place in factories, and they were not financed in the same way as modern enterprises. Furthermore, in Sweden the term manufacturér came to be primarily identified with one very specific type of goods: finished goods that had been produced with the explicit purpose of replacing imported goods.

A few of these finished goods were, of course, also produced by the peasants (hemslöjd), but their products were seen by contemporaries as belonging to a category different from that of manufactured goods, which were only produced in the cities and in accordance with special legislation. Finally, as opposed to the situation in many other countries in Europe, all Swedish manufactories were privately owned. The Swedish state made no attempts it-

self to undertake the production of, say, silk, as the German states did. Even when Linné sold the potentially lucrative invention of a method for cultivating pearls in the Swedish rivers to the estates, these quickly sold them on to a businessman.

While a few manufactories had been created already in the 1600s in Sweden, these were insignificant compared to the ones that were created in the 1700s, especially during the period from the 1720s to the 1760s, when the party of the promercantilist Hats was in power. The support that the Hats gave to the manufactories came in a wide variety of forms. For example, the import of certain products was forbidden, and no one except for the manufactories was allowed to develop import substitutes. Sometimes competition between individual manufactories was forbidden as well, again with the purpose of ensuring that no energy was wasted in the battle to replace imports.

First and foremost, however, support was given in the form of money. Liquid means either were handed out directly or took the form of loans and rebates. The manufactories were also allowed to borrow, using finished products or raw materials as security. If there was an interest at all on the loans, it was often minimal; it was also common for the state to relieve the manufactories of their obligation to repay the loans.

One of the manufactories received more money than all of the others together, and this was the Manufacturing Works of Alingsås, which throughout its existence was held up as a model by Congress for the other manufactories to emulate. This corporation had been created by Jonas Alström (1685–1761), a Swedish businessman who had made his fortune as a merchant in England and then returned home because of his vision that Sweden must create a textile industry of its own (see, e.g., Heckscher 1917, 1918). The charismatic Alströmmer quickly got Congress interested in his plans and was soon viewed as the very embodiment of the hope in Sweden to create a successful manufacturing industry. In reality Alström had few talents as a leader of manufactories, and he had little interest in their practical side. He was, however, a very persuasive man and spent much of his time in Stockholm, where he worked behind the scenes to ensure that the subsidies kept flowing to his creation in Alingsås.

The Manufacturing Works of Alingsås kept some 1,500 workers occupied in a huge number of tasks, primarily textile production but also the production of tobacco, needles, buttons, pipes, gold objects, and much more. It should be added that the production was not standardized and that often
only a small number of items were produced, typically for friends and personal acquaintances of Alströmer. One of Alströmer’s many pet projects was to import a new type of sheep into Sweden that could produce fine-quality wool. He also made an attempt to introduce the potato on a large scale into the country.

The Manufacturing Works of Alingsås was considered so important by the authorities in Stockholm that Alströmer himself was assigned full legal and political power over the city of Alingsås. He was also a member of the Royal Swedish Academy of Sciences and a friend of many of the most important scientists of the time, such as Polhem and Linné.

During one of his trips through Sweden, Linné visited Alingsås and was delighted by what he saw. He praised Alströmer and summarized his impressions in one of his traveling accounts, Västgöta Resa ([1746] 1940), as follows:

If you have not been there yourself, you can never imagine what it is like. Here you can see how far a person can go who uses his ideas in a wise manner and who in addition has a burning desire to serve the general public; a person of this type can often accomplish more than a thousand persons without ambition. Before Mr. Alströmer’s time, the manufactories were in deep darkness in most of our country, but now they produce cloth and food for many thousands. Most of the workers at Alingsås are Swedes, who have learned from artisans who come from abroad, so that most of the manufactories are run by our own countrymen, who now know how to produce as lovely textiles and clothes, with Swedish hands in Sweden, as any that are produced in other nations. (129)

While the Manufacturing Works of Alingsås was the flagship of the Swedish manufactories, there were also others. These were all situated in cities, following the tradition in the Middle Ages of assigning certain activities to the cities and forbidding them in the countryside. Most of the manufactories were situated in Stockholm, where one could also find half of all the workers who worked in this type of enterprise. Two-thirds of everything that was produced in the manufactories was produced in Stockholm. The next-largest city with manufactories was Norrköping, followed by Alingsås.

The three main products that were produced in the manufactories were textiles, sugar, and tobacco. In textiles, which was by far the most important of these, wool predominated. The production of silk was considerable; the main reason for this was that the estates were fascinated by the prospect of producing such an exotic material in Sweden. The estates were also very interested in the dyeing of textiles, and they heavily subsidized attempts to develop this type of capacity in the country. The production of sugar was based on sugar cane (which cannot be grown in Europe) and took place in special refineries. There was also small-scale production of glass, porcelain, tobacco pipes, mirrors, and paper in the manufactories.

The number of workers employed in the manufactories was thirteen thousand to fourteen thousand at first and then rose to sixteen thousand to seventeen thousand during the peak of the 1700s (Heckscher 1949: 610). Altogether this amounted to about 1 percent of the Swedish population. Most of the workers were women who worked on a part-time basis, often in the home. Since some types of spinning also took place in poorhouses, prisons, and similar institutions, the line between forced labor and work in the manufactories was blurred. In his report of what he saw in Alingsås, Linné noted, for example, that “there are no beggars here since they are put into the manufactories when they arrive” (Linné [1746] 1940: 117). It was also common for the workers to run away from the manufactories. According to mercantilist ideology, everybody in the population should work, and wages must be kept low or the country would not prosper.

How successful was the project of Congress (and especially the Hats) to jumpstart the production of formerly imported goods through the manufactories? On the whole, the answer is that it was not successful at all. Most of what was produced was of low quality and could not be sold at a profit, either domestically or abroad. The little that was sold on export was heavily subsidized.

There appears to have been many reasons for the poor quality of what was produced in the Swedish manufactories. One was that the workers lacked the skills that were needed to turn out high-quality goods. The level of skill in France, for example, where an important luxury industry had existed since the 1600s, was much higher. Another reason was the lack of economic sense among the leaders of the manufactories. They were largely inspired by the notion that they were producing something that had never before been produced in Sweden, but they had little practical experience in overseeing production and making a profit. They soon also discovered that at every step of the way they could be subsidized by Congress; this meant that many enterprises were allowed to stay in business even if the goods they produced were of inferior quality and could not be sold.
When some of the most wasteful forms of support for the manufactories were eliminated in 1765–66, the Manufacturing Works of Alingsås immediately collapsed, and the industry suffered heavily. The difficulties were also accentuated by the general economic crisis that was going on at the time. The silk industry disappeared for good in the 1800s, and in the long run few of the manufactories survived. Exactly how few is a debated question in Swedish historiography, with Heckscher arguing that the manufactories mostly disappeared, while some contemporary economic historians argue that more manufactories survived than Heckscher was aware of (see, e.g., Heckscher 1954: 185–86, 207–8; cf. Nyström 1955; Krantz 1976). What is true in any case is that the manufactories did not live up to the great hopes that Congress and the Hats had invested in them, namely to make Sweden into a rich and wealthy household.

Concluding Discussion

On his trip through Sweden in 1799, Thomas Malthus quickly realized that the country was very poor (Malthus [1803] 1989: 159). The peasants, as he notes in *An Essay on the Principle of Population*, had to mix bark into their bread, a traditional way of staving off starvation. In his description of Sweden Malthus also used statistics prepared by the Office of Tables. The number of Swedes, he says, was 3,043,731 in 1799, up from 2,229,661 in 1751. To Malthus this represented a dangerous development.

Whether Malthus was right or wrong in his theory that a growing population represents a threat to a country rather than a source of richness, as the mercantilists had thought, it is clear that the Sweden that Malthus saw and the one that had been envisioned by some hopeful Swedes in the 1700s were two very different countries. By the 1790s, it was also clear that most of the dreams that had fired the imaginations of the hopeful mercantilists in Sweden had failed. Malthus does not refer to the wild speculations of the political arithmeticians, but he would no doubt have shivered if he had heard about their hopes for a population of some twenty million to thirty million people in Sweden.

By the time of Malthus’ visit, the dreams of Linné and his disciples to make Sweden into a kind of earthly paradise had all been abandoned. Coffee, tea, and many other plants that were brought from southern countries had not survived, and the elks were still wild. The project of a grandiose manufacturing industry had also crashed, even if some of the manufactories were still in existence in the 1790s.

The Sweden that Malthus visited was poor and miserable, not rich and full of prosperous people as Linné and others had hoped it would be. This, however, does not mean that the mercantilist-utopian projects left no traces. Acts often have unintended consequences, and this was also true for these projects.

One might, for example, think that even if the manufactories failed, they might have helped to set off the industrialization of Sweden that took place in the second half of the nineteenth century. This, however, does not seem to have been the case; and when industrialization did come to the country, it was concentrated in three economic sectors that had no links whatsoever to the manufactories of the mercantilists (the iron industry, the forest industry, and the machine industry).

Two unpredictable chains of events that were set off by the mercantilist-utopian projects did, however, result in something important and valuable being produced in Sweden. The first of these had to do with the collection of facts about the Swedish population, with the help of political arithmetic, and the second with the effort to end the import of grain into the country.

It was earlier mentioned that the Swedish Congress was very interested in having a big population, and that it was disappointed when the figures it received from the Office of Tables conclusively showed that the population of the country was quite small. What accounted for the great accuracy of the results from the Office of Tables was that Sweden, as chance would have it, did have access to exact figures on how many people lived in the country. The upshot of the whole thing was that the Office of Tables, under the leadership of Wargentin, was in a position to set political arithmetic to the side and introduce a new and very reliable type of statistics.

Instead of continuing to make a mercantilistic type of inventory, the Office of Tables increasingly began to view its task as simply gathering statistics on the population. As Johansson has emphasized in *The Measurable Society: Statistics and the Dreams of Society in Eighteenth-Century Europe*, the famous Swedish population statistics had originally been put together as part of the grandiose project of exploring Swedish wealth with the help of political arithmetic. But the project then shrank to the more modest task of simply gathering data on when people were born and when they died (Johansson 1988: 174–79).

The second chain of unpredictable events that was set off by a mercantilist-utopian project and that led to something useful involved the potato. During
the 1700s the Swedish authorities were worried about the expensive imports of grain and looked around for possible substitutes (see, e.g., Heckscher 1954: 154–57). One such alternative was the potato, which until then had only been known in the country as a kind of exotic curiosity. Especially the colorful Alströmer took an interest in it and tried to launch it on a big scale. But the peasants remained suspicious and refused to try out the new crop.

In 1748, however, Countess Eva de la Gardie submitted a paper to the Royal Swedish Academy of Sciences in which she showed that the potato could be used not only for food but also to produce powder, food for cattle—and alcohol. The Board of Commerce (Kommerskollegium) soon spread the good news among the population that the potato could be used to produce alcohol. That people would get drunk was something the state did not care about, especially since the use of the potato would lessen the demand for imported grain (which was often used for this very purpose).

The insight that the potato could be used to make alcohol broke down the resistance to its use among the peasants, who as time went on also began to use it as food. Since then, the potato has become an integral part of the diet of the average Swede. In brief, from the mercantilist-utopian hopes in the 1700s, at least two very useful items were produced that today are part of Swedish society: Statistiska Centrallyran (as the Office of Tables has been known since 1858) and a new and healthy staple—the potato.

Note

1. Unless otherwise stated, when the source in this chapter is in Swedish and the quote is in English, the translation is my own.

References

CHAPTER 3

Hope Turned Upside Down:
How the Prospects for a Communist Utopia
Were Dashed in 1950s Romania

Katherine Verdery

In his paper “From Sugar Canes to ‘Swords,’” Hirokazu Miyazaki (2005) distinguishes between “hope in the means,” which foregrounds a particular vehicle for accomplishing something (his example is the dynamics of gift giving), and “hope in an end,” which foregrounds a predetermined end state. The distinction can apply both to the horizons of people anthropologists study and to the analytic horizons of the anthropologists themselves. Arguing for more attention to hope in the means, Miyazaki concludes his paper with these words: “This hope in extending a means [gift giving] is hope in the act of hoping. It is precisely such hope that evaporates when an end dictates the means” (290).

It was precisely this practice of the end dictating the means that characterized the type of society I have been studying for four decades: Soviet-style socialism. This was a society built from the top down to realize a communist utopia, a desired end state whose achievement would justify any means used to reach it. True to Miyazaki’s prediction, however, the result was the gradual evaporation of hope and ultimately the collapse of these socialist regimes. In the wake of this collapse and the alienation and criticism that preceded it, there has been little interest in exploring the hope that mobilized movements of liberation pursued in the name of such utopian goals. Least of all have Soviet-type societies themselves lately been described in